Hawaii Machine Learning Meetup Introduction to Machine Learning in R

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Recap

Introduction to Machine Learning in Python

- Ingest: import the data into a local data structure
- Groom: modify the data into some schema
- Split: break the data into a training set and a testing set
- Select: pick an algorithm appropriate for the data and the situation
- Fit: build a model of the data using the selected algorithm
- Predict: compute new results from the model
- Display: show a range of predictions from the model

Recap

Today's Meetup

- Exploratory Data Analysis: gain insights
- Feature Engineering: incorporate insights and domain expertise
- Model Selection and Overfitting: determine which model is "best"

"Young man, in mathematics you don't understand things. You just get used to them."

— John Von Neumann

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Basics of R

History

R is a language and environment for statistical computing and graphics

Created by statisticians for statisticians

Ross Ihaka

Robert Gentleman

John Chambers

Basics of R

History

R is a language and environment for statistical computing and graphics

- Created by statisticians for statisticians
- Functional programming language

"To understand computations in R, two slogans are helpful:

- Everything that exists is an object.
- Everything that happens is a function call."

— John Chambers

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Exploratory data analysis is a process for understanding data

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone."

— John Tukey

- Uncover underlying structure in a dataset
- Summarize characteristics of the dataset
- Maximize insight into a dataset

14

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Feature engineering is the process of creating new features

"Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering."

Andrew Ng

- Incorporates domain knowledge and intuition.
- Makes learning easier for the machine learning algorithm.

Monotonic Transformations

Salary should continuously increase with increasing experience.

Monotonic Transformations

Salary should continuously increase with increasing experience.

Monotonic Transformations

Salary should continuously increase with increasing experience.

One-Hot-Encoding and Feature Interactions

$$\hat{y} = \sum_{i=1}^{3} I\{\text{company} = i\} \cdot (a_i \sqrt{\text{experience}} + b_i)$$

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Model selection addresses the following questions:

- How do we know which features to use?
- How do we know which model is "best"?
- What do we mean by "best"?

Training, Validation, and Generalization Error

- We fit a model to minimize training error.
- We evaluate a model using validation error.
- Our theoretical performance of a model is given by it's generalization error.

Single Validation Set

- Partition the data into a training set and a validation set.
- Fit a model by minimizing training set error.
- Make predictions on the validation set.
- The validation error is an estimate of the generalization error.

10-Fold Cross-Validation

- Partition the data into 10 folds.
- Use the first fold as the validation set and the remaining folds as the training set.
 - Fit a model by minimizing training set error.
 - Make predictions on the validation set.
- Repeat 10 times with a different fold out each time.
- The average *out-of-fold* error is an estimate of the generalization error.

10-Fold Cross-Validation

Final Accuracy = Average(Round 1, Round 2, ...)

10-Fold Cross-Validation

Cross-Validation - Polynomial Regression

Bootstrap aggregating (Bagging)

- Use bootstrap sampling (sampling with replacement) to create a training set. All observations not in the training set go in the validation set.
 - Fit a model by minimizing training set error.
 - Make predictions on the validation set.
- Repeat multiple times.
- The average *out-of-bag* error is an estimate of the generalization error.

Bootstrap aggregating (Bagging)

Bagging - Polynomial Regression

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Resources

Online Courses

```
<u>Statistical Learning</u> – by Stanford Online (Trevor Hastie, Rob Tibshirani)

<u>The Analytics Edge</u> – by MITx (Dimitris Bertsimas)

<u>Machine Learning A-Z</u> – by SuperDataScience Team
```

Free Online Books

R for Data Science – by Garrett Grolemund and Hadley Wickham Advanced R – by Hadley Wickham

Cheat Sheets

```
<u>data.table</u> – by DataCamp

<u>Miscellaneous</u> – by R Studio
```

- Recap
- Basics of R
- Exploratory Data Analysis
- Feature Engineering
- Model Selection
- Resources
- Hands-On Practice

Code - https://github.com/hawaiimachinelearning/into-to-machine-learning-in-r

- Exploratory Data Analysis fit and plot all 1-25 degree polynomials
- Feature Engineering create feature to capture seasonal trend
- Model Selection use cross-validation to tune the mtry hyperparameter of the randomForest function
- Model Selection use bagging to tune the alpha hyperparameter of the glmnet function

Exploratory Data Analysis

Feature Engineering

Model Selection

Cross-Validation - randomForest

Model Selection

Bagging - GLMNET

